首页> 外文OA文献 >From the Newton's laws to motions of the fluid and superfluid vacuum: vortex tubes, rings, and others
【2h】

From the Newton's laws to motions of the fluid and superfluid vacuum: vortex tubes, rings, and others

机译:从牛顿定律到流体和超流体真空的运动:   涡流管,环等

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Owing to three conditions (namely: (a) the velocity is represented by sum ofirrotational and solenoidal components; (b) the fluid is barotropic; (c) a bathwith the fluid undergoes vertical vibrations) the Navier-Stokes equation admitsreduction to the modified Hamilton-Jacobi equation. The modification term isthe Bohmian(quantum) potential. This reduction opens possibility to define acomplex-valued function, named the wave function, which is a solution of theSchr\"{o}dinger equation. The solenoidal component being added to the momentumoperator poses itself as a vector potential by analogy with the magnetic vectorpotential. The vector potential is represented by the solenoidal velocitymultiplied by mass of the fluid element. Vortex tubes, rings, and balls alongwith the wave function guiding these objects are solutions of this equation.Motion of the vortex balls along the Bohmian trajectories gives a model ofdroplets moving on the fluid surface. A peculiar fluid is the superfluidphysical vacuum. It contains Bose particle-antiparticle pairs. Vortex linespresented by electron-positron pairs are main torque objects. Bundles of thevortex lines can transmit a torque from one rotating disk to other unmoveddisk.
机译:由于三个条件(即:(a)速度由旋转和螺线管分量的总和表示;(b)流体是正压流体;(c)带有流体的浴经历垂直振动)Navier-Stokes方程可简化为修正的Hamilton -雅各比方程式。修饰项是波姆势。这种减少为定义一个复数值函数(称为波动函数)提供了可能性,该函数是Schr \“ {o} dinger方程的解。该函数被添加到动量运算器中,其螺线管组件通过类似于磁矢量势将其自身作为矢量势。矢量势由螺线管速度乘以流体元件的质量表示,涡流管,环和球以及引导这些对象的波动函数是该方程的解。特殊的流体是超流体物理真空,它包含玻色粒子-反粒子对,由电子-正电子对代表的涡旋线是主要的转矩对象,涡旋线束可以将转矩从一个旋转的圆盘传递到另一个未移动的圆盘。

著录项

  • 作者

    Sbitnev, Valeriy I.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号